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Dynamic scaling of desert dunes
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The shapes of shifting sand dunes of different size and under diverse environmental conditions exhibit a
remarkably high degree of similarity. On this basis, a reduced shape parametrization of dunes in terms of a few
characteristic parameters such as height and length is routinely applied in the geomorphological literature. In
view of the a priori extremely high dimensionality of a freely evolving dune’s state space, the justification for
this common practice is, despite its alluring simplicity, all but obvious. In order to unveil the origin of the
apparent reduction of complexity, we study the dynamics of (slices of) isolated dunes within the framework of
the recently proposed minimal model of sand dune formation [K. Kroy, G. Sauermann, and H. J. Herrmann,
Phys. Rev. Lett. 88, 054301 (2002); Phys. Rev. E 66, 031302 (2002)]. Our numerical solutions—
complemented by scaling relations derived from the model equations—show that the predicted time evolution
of the shape and size of dunes, in response to naturally varying conditions such as wind strength and sand
supply, is subject to a similarity law, closely controlled by the instability modes of the steady-state solutions of
the model equations. By this dynamical similarity, the multitude of observed shapes and time evolutions of
desert dunes is traced back to a unified growth law and to the elementary scales provided by grain size and

wind speed.
DOI: 10.1103/PhysRevE.77.031302

I. INTRODUCTION

Wind-blown sand creates some of the most impressive
inanimate dynamic structures in nature, spanning more than
four decades of length from the neat ripple patterns on
beaches through dunes and draas to vast shifting dune fields
swallowing roads and settlements [1,2]. On each scale, struc-
ture formation obeys similar rules [3-5], while admitting
considerable shape variations [6,7]. Emerging from the
subtle interplay of turbulent air flow and nonequilibrium
sand transport, isolated dunes and particularly barchan dunes
with their eye-catching crescent shape (see Fig. 1 for a
sketch) are among the most prominent wind-shaped struc-
tures. Barchan fields form under unidirectional flow on plane
bedrock, where sand supply is limited, and cover annual dis-
tances of 20-70 m while retaining an “exactitude of repeti-
tion and geometric order unknown in nature on a scale larger
than that of crystalline structure” [1]. This high mobility to-
gether with the huge amount of sand that is displaced within
a propagating dune makes shifting dune fields a considerable
ecological and economical threat in arid regions.

Turbulent boundary layer flow over a smooth symmetric
hump creates a weak symmetry breaking due to the dissipa-
tive nature of the emerging irregular flow patterns: the wind
speed attains its maximum at a certain upwind distance JL
from the crest, not right above it [9—11]. Since the erosive
power of the wind is very sensitive to its speed, this behavior

*kroy @itp.uni-leipzig.de

1539-3755/2008/77(3)/031302(6)

031302-1

PACS number(s): 45.70.Qj

translates into deposition on the crest of a sand heap, where
the wind speed is decreasing. That is, in a nutshell, the ex-
planation why flat sand beds—much like water surfaces
[12]—are unstable against the spontaneous formation of
wavelike undulations if exposed to sufficiently strong winds
[8,13]. (It is also what distinguishes “dunes” from “ripples,”
in which the dominant symmetry-breaking instability is at-
tributed to the direct effects of bed-slope on grain transport
[14].) The length SL is proportional to the dominant wave-
length of the surface undulations, but essentially independent
of their amplitude, so that the symmetry breaking remains
present even for small amplitude perturbations [8,13].

By throttling down the sand supply to a degree where the
wind flowing over a heap can no longer attain saturation with
sand before reaching the crest, the deposition mechanism just
outlined can be halted. Under these “unsaturated” conditions,
erosion no longer switches into deposition with the decreas-
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FIG. 1. Sketch of a barchan dune. Characteristic height H and
length L are defined as the height and the half length at half height,
respectively, of the envelope comprising the height profile and the
separation bubble [8], which provides a simplistic but efficient phe-
nomenological parametrization of the physical effects of wake
zones.
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ing wind speed at the crest. Instead, the airborne sand flux
increases across the crest, which is thereby eroded. The heap
shrinks and, eventually, vanishes. A wind-speed-dependent
length scale €, called the saruration length [15], describes
the mismatch between the sand flux and the wind speed. It
quantifies how far in space the actual sand flux lags behind
the nominal transport capacity of the wind dictated by the
local wind speed.

The so-called minimal model of dune formation presents
both a formal and an intuitive framework that explains sev-
eral important features in terms of a competition between €
and SL [8,13]. Such features include the observed systematic
shape differences between dunes of different size or under
different ambient conditions, the existence of a minimal dune
size, and shape transitions between smooth, dome-shaped
profiles and sawtooth-shaped profiles with a slip face. How-
ever, these insights are based almost entirely on steady-state
solutions of the model equations, with periodic boundary
conditions imposed to ensure exact matching of the influx
and outflux of sand [8,13,16-20].

Real sand dunes, in contrast, are subject to variations of
wind and other conditions, so that the influx is never exactly
equal to the outflux. Here we address an intriguing and im-
portant question: do dunes under such naturally varying con-
ditions, which are growing or shrinking in size most of the
time, still obey the similarity rules that pertain to steady
states created under the artificial imposition of a constant
wind speed and exact flux matching?

Provided that the steady-state solutions were stable ar-
tractors of the global dynamics, this would indeed be the
case: small changes in ambient conditions would cause
equally small changes in dune behavior. But in fact, as we
will demonstrate below, the fixed points representing these
steady-state solutions are saddles and therefore unstable with
respect to small perturbations in wind speed and/or influx:
dunes are generically driven away from the steady-state so-
lutions [8,16,17,20,21]. Despite this, we show here that the
unstable solutions, which describe dunes that are either
growing or shrinking, remain subject to a form of dynamical
similarity. We will see that a decisive role in this is played by
the unstable manifolds of the fixed points, which turn out to
tightly constrain the dynamic evolution of both growing and
shrinking dunes. The result is a rapid evolution toward a
stable dune shape, followed by a much slower drift away
from this caused by the changing size of the dune. By study-
ing this effect we uncover a unified growth law for dunes of
arbitrary mass under a wide range of wind and flux condi-
tions. Crucially our approach depends only on the general
form, not the details, of the minimal model equations.
Strictly speaking the significance of this analysis is limited to
two-dimensional dune slices i(x,7), with or without slip face,
along the symmetry direction of a three-dimensional dune
profile. This helps to make our analysis more transparent and
independent of some debatable supplementary assumptions
employed in three-dimensional modeling. On the basis that
three-dimensional dunes created by unidirectional wind (e.g.,
transverse dunes and barchans) can essentially be regarded as
weakly coupled assemblies of such slices, as the lateral sand
flux is typically one order of magnitude smaller than the flux
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along the wind direction, our results do, however, also pro-
vide important information about the full problem.

II. MINIMAL MODEL

As outlined above, the minimal model combines two ma-
jor physical mechanisms into a self-contained mathematical
scheme. First, the variation of the wind strength along a dune
profile is expressed in terms of the shear stress (or surface
friction) 7(x) exerted by the wind on the ground [9-11]. Sec-
ond, the model sets up phenomenological balance equations
for the hopping of grains; the impacts of airborne grains on
the sand bed dislodge new grains, thereby maintaining a
“granular chain reaction” known as saltation [15]. For most
practical purposes these equations can be condensed into a
single differential equation for the sand transport rate, or
“flux,” g(x):

€, dq/ox=q(1-qlq,). (1)

This must be solved for each value of the influx g;,, which is
the sand transport rate at the upwind boundary. The “kinetic
coefficients” [8,15] ¢, and ¢, are called the saturation length
and the saturated flux, respectively. These are unique func-
tions of the local wind strength 7(x), unless the latter falls
below a threshold value 7; such that aeolian sand transport
dies out. The shape evolution follows from the solution of
Eq. (1) via mass conservation: dh=—p_. .d.q, where pgng is
the bulk sand density of the dune. Due to a strong time-scale
separation, 7(x) and ¢(x) depend only parametrically on time
t via the slow evolution of the height profile i(x,z).

If the coefficients €, and g, were mere constants, Eq. (1)
would reduce to the logistic equation familiar from elemen-
tary population dynamics, which is in fact a handy starting
point for qualitative considerations [22]. This already cap-
tures one of the most important properties of Eq. (1), which
is a “memory effect” in the sand transport: upon a sudden
change of the ambient conditions (wind strength, sand sup-
ply, etc.), the actual sand transport rate g(x) lags about a
distance ¢ behind the nominal value ¢, one would predict on
the basis of the locally prevailing conditions alone. An in-
triguing implication of Eq. (1), which is solely due to these
memory effects and quite insensitive to the detailed func-
tional form of €, is that € sets the only characteristic length
scale in the problem [8,13,23-25]. (Remember that SL is
merely a fixed percentage of the overall dune length.) As a
consequence, different dune profiles should almost superpose
when length and height are appropriately scaled. Recent
studies of steady-state solutions, obtained for fixed wind
strength and periodic flux boundary conditions, have indeed
supported this expectation [20]. These works show that a
nontrivial, anisotropic length renormalization meshes all
windward steady-state profiles onto a single master curve, in
striking agreement with field observations [7,26].

II1. SIZE INSTABILITY AND SHAPE ATTRACTION

The cross-sectional shape of dunes along the wind direc-
tion can therefore to an excellent approximation be param-
etrized by only two quantities—say, the dune’s length L and
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FIG. 2. “Shape attraction”: stationary dome-shaped solution
with its unstable manifold in the reduced V-e phase space as ob-
tained numerically from the “minimal model.” Mismatched initial
conditions with respect to the stationary solution (V) under the
prescribed wind and flux conditions (7y=2.27,, ¢;,=0.6¢,,) were
created as stationary solutions corresponding to the “wrong” degree
of influx saturation g;,/¢50=0.4 (O), ¢iy/¢s0=0.8 (O) or “wrong”
reference shear stress 7,=1.87, (@), 7,=2.67, (M), respectively.
They quickly evolve (solid lines) toward the unstable manifold
(dashed line). Inset: the time evolution of the ratio of the relative
aspect ratio variation €/ € to the relative volume variation VIV after
a sudden change in ambient conditions exhibits a rapid shape adap-
tation followed by a slow, persisting mass evolution.

height H (see Fig. 1 for a definition) or, more pertinently, a
size parameter V=HL (roughly, the dune volume per unit
transverse length) and an aspect ratio or shape parameter €
= H/L (roughly the average windward slope). This represen-
tation of steady-state solutions in a space of only two vari-
ables, governed in turn by only two external parameters de-
scribing ambient conditions (the overall wind strength and
the influx), inspires our hypothesis that even unsteady solu-
tions, which describe growing or shrinking dunes, might still
be governed by a dynamical scaling law. We now elucidate
the decisive role played in this by the unstable manifolds of
the steady-state solutions, starting from an analysis of the
stability properties of isolated dunes under prescribed influx.
Our numerical implementation follows the procedure given
in Ref. [8] where units are kept in order to get a rough sense
of dimensions.

First, we note that the steady-state solutions can be repre-
sented as fixed points in our reduced phase space, which is
the V-€ plane; see Fig. 2 (remember that in our context V
denotes a volume per unit width and is hence measured in
m?). Each fixed point specifies a pair of size and shape vari-
ables V and € (solid triangle in Fig. 2), describing the steady-
state solution for prescribed external parameters g;, and 7.
Here the overall wind speed is parametrized by 7, the shear
stress exerted by the wind on a plane surface far from any
obstacles.

Consider now a minute mismatch of ambient conditions
{79, ¢i,} to shape parameters {e, V}, achieved, say, by in-
crementing or decrementing the dune volume, at fixed shape,
by an infinitesimal amount. As stated above, this always
drives the solution away from steady-state behavior; the sub-
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sequent time evolution defines the unstable manifold of the
fixed point. Numerically, a very small finite increment or
decrement gives evolution that accurately approximates this
manifold (the pair of dashed lines in Fig. 2). To further ex-
plore the reduced phase space in the vicinity of the fixed
point, we also show in Fig. 2 the fate of four solutions with
quite severely mismatched initial conditions. These come in
two pairs, starting out as steady-state solutions correspond-
ing to a “wrong” wind strength (solid circle and square) or
“wrong” influx (open circle and square), respectively. All
trajectories quickly approach the unstable manifold, which
they closely follow subsequently. The inset of Fig. 2 quanti-
fies the impression that one can discern two stages in the
dynamic evolution: an initial stage dominated by the adap-
tation of the shape (quantified by €) to the new ambient
conditions, resulting in an evolution toward the unstable
manifold; and a second stage dominated by the mass change
incurred while the solution is drifting along the unstable
manifold. Roughly speaking, one can thus identify € and V
with the attractive and repulsive directions of the fixed point
in the reduced phase space. This explains, in hindsight, the
names “‘size” and “shape” parameters for V and € and estab-
lishes the pertinence of this parametrization. Although a pre-
cise and complete characterization would require one to ad-
dress the full (infinite-dimensional) phase space of dune
shapes and sizes, this low-dimensional picture qualitatively
captures the numerical behavior of the minimal model in a
remarkably compact and elegant way. Summarizing, al-
though the steady-state fixed points are unstable, their un-
stable manifolds play, in our reduced phase space, the role of
“shape attractors” for unsteady solutions describing dunes of
growing or shrinking mass. In our opinion, shape attraction
also underlies the (transient) convergence of numerical solu-
tions of the minimal model with respect to the dune shape in
three dimensions, where it forms the basis of the unambigu-
ous identification of the wind- and influx-dependent mini-
mum size of a freely evolving three-dimensional barchan
dune (i.e., the smallest dune with a slip-face in its central
part) [27].

To illustrate this further, a representative “phase diagram”
for a given 7, is presented in Fig. 3. This delineates the
various possible types of solution (steady-state, asymptoti-
cally shrinking and growing, dome-shaped, sawtooth-
shaped) in the reduced V-e phase space. Dome-shaped
steady-state solutions result for small volume V and finite
influx g;, (lower branch of the solid line) and sawtooth-
shaped dunes for large V and vanishing g;, (upper branch of
the solid line), irrespective of the initial conditions." An ex-
ception occurs in the vicinity of the smallest dune with a
slip-face, indicated by an open triangle, where there is hys-
teretic behavior: here the choice of the initial dune shape
determines the type of steady-state solution obtained, even

'Note that the vanishing influx ¢;, in the case of a sawtooth-
shaped dune is a peculiarity of the two-dimensional modeling,
where all incoming sand is trapped in the slip face. In three dimen-
sions a stationary sawtooth-shaped dune slice with nonzero influx
exists due to a finite lateral sand flux which ensures that the flux
balance is observed.
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FIG. 3. Shape scaling at fixed reference shear stress 7,=2.27,.
Fixed points organize the effective phase diagram in the reduced
V-€ phase space. Fixed-point solutions are either dome shaped
(lower solid line) or sawtooth shaped (upper solid line); only in the
hysteretic region can both types of solutions be realized. They sepa-
rate regions of growing and shrinking solutions that evolve asymp-
totically along the unstable manifolds (dash-dotted lines). Growing
dome-shaped solutions develop a slip face upon crossing the falling
dotted line. Symbols correspond to influx saturation g;,/gs0=0.86
(), 0.67 (M), 0.45 (O), 0.26 (@), and 0 (A). Inset: the unstable
manifolds collapse onto a master curve upon rescaling as proposed
in the main text.

under periodic flux boundary conditions. The set of all these
steady-state solutions makes up a line of fixed points that
divides the reduced phase space into regions of shrinking
(left side) and growing (right side) dunes. Through each
fixed point passes an unstable manifold (depicted for se-
lected influx values only) which is a shape attractor for
shrinking or growing dunes as they move away from the
fixed point in question. Growing domelike solutions, moving
rightward along such an unstable manifold, develop a slip
face upon crossing the dotted line (see Ref. [21] for snap-
shots of the profiles). The weak slope of this line in Fig. 3
reveals a sensitive dependence of slip-face formation on the
degree of influx saturation, which explains the common ob-
servation of more rounded dune shapes in regions with
ample sand supply. As demonstrated in Fig. 4, an analogous
picture emerges if one considers various wind speeds at fixed
influx saturation g,/ ¢ o-

IV. DYNAMIC SCALING

As demonstrated in the inset of Fig. 3, the unstable mani-
folds found for different g;, at the given 7, almost collapse
onto each other on appropriate rescaling. The scaling factors
here are determined empirically (viz., obtained from the
fixed point solutions with the corresponding influx) and thus
incorporate the full dependence of the long-time solutions on
ambient conditions. However, such scaling factors can be
estimated perturbatively for flat smooth profiles (e<1), in
which both the saturated flux ¢,(7) and the saturation length
£,(7) are close to the reference values g, (=g,(7y) and €
={,(7,) obtained over a plane surface. Under these condi-
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FIG. 4. Shape scaling at fixed influx saturation g;,/gs=0.4.
Again, the fixed points organize the reduced phase space, but now
all fixed-point solutions are dome shaped. They separate regions of
growing and shrinking solutions that evolve asymptotically along
the unstable manifolds (dash-dotted lines). Growing dome-shaped
solutions develop a slip face upon crossing the falling dotted line.
The symbols correspond to a reference shear stress 7y=1.47, (O),
1.8 (M), 2.2 (O), 2.6 (@), and 3.0 (A). Inset: the unstable manifolds
collapse onto a master curve upon rescaling as proposed in the main
text.

tions, variations can be linearized in the nondimensionalized
shear stress deviation 7/ 1y—1:

q5/qs0= 1+ (/75— 1)/C(7). (2)

Here, C(7y) = 1 — 7,/ 7, for not too high values of 7,. One now
considers the situation close to the windward foot of the
profile, where the flux ¢g,(7) must be closely matched by the
influx ¢g;, in order to ensure an essentially shape-invariant
downwind migration. Together with the scaling 1-7/71y* €
of the shear-stress suppression with the aspect ratio [8,13],
this determines the scaling factor for the aspect ratio,

€X C(TO)(I - C]in/‘]s,o) s (3)

already anticipated in Ref. [8]. The scaling factors for height
H=eL and volume V=eL? follow by making use of the fact
that the wind-strength dependence of the length L closely
follows that of €, for flat profiles. In this vein, one also
deduces the scaling of the migration speed v
% g 0/ [PsandC(19)€s 0] and the corresponding rescaling of
time

re psandC( To)gg,o/‘Zs,o- (4)

This only depends on the wind strength and is independent
of the influx, as nicely confirmed by the collapse of the nu-
merical solutions for the time evolution of the volume of
growing and shrinking profiles under various wind and sand
conditions displayed in Figs. 5 and 6. Systematic deviations
from scaling at large V can be attributed to shape transitions
from dome-like to sawtoothlike profiles. For our two-
dimensional slices, slip-face formation clearly fixes the

growth rate of the profiles to V=g;,/p,. as no sand can es-
cape via the slip face. Other minor discrepancies can be
traced back to additional shear-stress effects on the dune
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FIG. 5. Mass evolution and dynamic scaling at fixed influx satu-
ration g;,/g;0=0.4. Growth (shrinkage) was initiated by a slight
positive (negative) volume perturbation of the stationary dome-
shaped solutions obtained for various shear stresses 7y/7,=1.8
(solid lines), 2.2 (long-dashed lines), 2.6 (short-dashed lines), and
3.0 (dotted lines). Inset (a): data collapse for late-time solutions
achieved upon rescaling time and volume independently. Scaling is
broken by shape transitions from dome-shaped to sawtooth-shaped
solutions. Inset (b): the best scaling factor VIV for V (X) (V de-
notes the rescaled, dimensionless volume) compared to the simple
rule derived in the main text (solid line). As expected, deviations
increase with increasing wind strength.

length L, not captured in €,,. In comparison to Eq. (4) the
time scaling derived in Ref. [16] on purely dimensional
grounds lacks the additional wind-strength-dependent factor
C(7) and does not capture the wind-strength dependence of
our numerical data correctly.

V. CONCLUSIONS AND OUTLOOK

The above completes our prescription, based on the pre-
cepts of the minimal model of dune formation, for reducing
the observed multitude of shapes and growth histories of
aeolian sand dunes to a unified growth law by a dynamical
rescaling transformation. Although our analysis is exclu-
sively based on two-dimensional slices along the wind direc-
tion, we expect it to capture the qualitative behavior of
propagating dunes in the field. (As mentioned at the end of
the Introduction, the transverse components of the wind ve-
locity and the sand flux that couple adjacent cross sections
within a dune are typically an order of magnitude smaller
than those along the wind direction.) The minimal model
thus leads us to expect that the shape and dynamics of sand
dunes can for many purposes be adequately represented by a
simple growth curve in a dramatically reduced phase space
spanned by only two state variables (size and aspect ratio).
While some information and hence accuracy are necessarily
lost by doing so, the ability to find a workable reduced rep-
resentation of a complex system is the hallmark of successful
hierarchical modeling [4].

In the case of dunes, this procedure relies on the interme-
diate scale invariance or homogeneity of the underlying
physical mechanisms of structure formation, which in turn
rests on the small grain size and the self-similarity of the
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FIG. 6. Mass evolution and dynamic scaling at fixed reference
shear stress 7/ 7,=2.2. Growth (shrinkage) was initiated by a slight
positive (negative) volume perturbation of the stationary dome-
shaped solutions obtained for various values of influx saturation
Gin’ 450=0.86 (solid lines), 0.67 (long-dashed lines), 0.45 (short-
dashed lines), and 0.27 (dotted line). Inset (a): data collapse for
late-time solutions achieved upon rescaling time and volume inde-
pendently. Scaling is broken by shape transitions from dome-shaped
to sawtooth-shaped solutions. Inset (b): the best scaling factor VIV

for V (X) (\7 denotes the rescaled, dimensionless volume) compared
to the simple rule derived in the main text (solid line).

turbulent wind flow. Our results justify a posteriori the con-
venient, but so far tentative characterization of desert dunes
in terms of height-length relations, common in the geomor-
phological literature (see Ref. [23] for a recent overview),
and help to unravel their sensitivity to the ambient condi-
tions. While existing systematic investigations of the static
[7,16,20] and dynamic [17,25] scaling of sand dunes support
our predictions, more comprehensive measurements along
these lines clearly remain highly desirable.

It would be interesting to establish to what extent the
dynamical similarity rule found above might extend to the
whole hierarchy [2] of self-organized structures alluded to at
the start of this article and to situations, such as dunes under
water or in extraterrestrial atmospheres [20,28,29], where the
dominant sand transport mechanism differs from the salta-
tion model employed in the original derivation [15] of Eq.
(1), giving, e.g., potentially strongly altered functional forms
for €,(7) and ¢,(7). Such expectations seem to be supported
by a comparison of laboratory measurements of dunes in
water with field measurements in the desert [24,25], which
indicate that for submarine dunes the characteristic length
scale €, in Eq. (1) is given by the grain size itself, while it is
about three orders of magnitude larger for aeolian dunes be-
cause of the lower density of the driving medium. In the light
of our above analysis this suggests, in particular, that there
might be no direct analog of the hierarchy of aeolian ripples
on aeolian dunes in subaqueous unidirectional shear flows.

Further exciting perspectives arise from the possibility to
change the mass density of the grains in a controlled way
[30] without invalidating the above similarity rules. This
may soon permit the realization of scaled-down aeolian
dunes and ripples in the laboratory, thereby removing a ma-
jor obstacle for their systematic study [23,31].
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